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Summary of main results
I Geometric multigrid (GMG) for

preconditioning Stokes systems

I Novel GMG based BFBT/LSC
pressure Schur complement pre-
conditioner

I Repartitioning on coarse GMG
levels for load-balancing and MPI
communicator reduction

I Algebraic multigrid (AMG) as
coarse solver for GMG avoids full
AMG setup cost and large matrix
assembly

I High-order finite elements

I Adaptive meshes resolving hetero-
geneous viscosity with variations of
up to 6 orders of magnitude

I Octree algorithms for handling
adaptive meshes in parallel

I Parallel scalability results on up to
16,384 CPU cores (MPI)

I Inexact Newton-Krylov method for
highly nonlinear rheology

I Global-scale simulation of Earth’s
mantle flow

1. Earth mantle flow

Model equations for mantle convection with plate tectonics
Rock in the mantle moves like a viscous, incompressible fluid on time scales of
millions of years. From conservation of mass and momentum, we obtain that
the instantaneous flow velocity can be modeled as a nonlinear Stokes system.

−∇ ·
[
µ(T,u) (∇u +∇u>)

]
+∇p = f (T )

∇ · u = 0

u . . . velocity
p . . . pressure
T . . . temperature
µ . . . viscosity

The right-hand side forcing f is derived from the Boussinesq approximation
and depends on the temperature. The viscosity µ depends exponentially on the
temperature (via an Arrhenius relationship), on a power of the second invariant
of the strain rate tensor, incorporates plastic yielding, and lower/upper bounds.

µ(T,u) = max

(
µmin,min

(
τyield
2ε̇(u)

, wmin
(
µmax, a(T ) ε̇(u)

1−n
n

)))
with exponentially on temperature dependent factor a(T ), plate decoupling
w(x), viscosity bounds 0 < µmin < µmax, yielding stress 0 < τyield, exponent
n ≈ 3, and square root of the 2nd invariant of the strain rate tensor ε̇(u).

Central open questions

I Main drivers of plate mo-
tion; negative buoyancy
forces or convective shear
traction?

I Strength of plate coupling & amount of en-
ergy dissipation in hinge zones

I Role of subducting slab geometries

I Accuracy of rheology extrapolations de-
rived from laboratory experiments

Research target
Global simulation of the
Earth’s instantaneous mantle
convection and associated
plate tectonics with realistic
parameters and high reso-
lutions down to faulted plate
boundaries.

2. Solver challenges of global-scale mantle flow
Inherent challenges of realistic Earth mantle flow simulations:
I Severe nonlinearity, heterogeneity, and anisotropy of the Earth’s rheology

with a wide range of spatial scales
I Highly localized features with respect to Earth’s radius (∼6371 km), like plate

thickness ∼50 km and shearing zones at plate boundaries ∼5 km
I 6 orders of magnitude viscosity contrast within ∼5 km thin plate boundaries
Highly accurate numerical simulations require:
I Resolution down to∼1 km at plate boundaries (uniform mesh of Earth’s man-

tle would result in computationally prohibitive O(1012) degrees of freedom).
Enabled by: adaptive mesh refinement

I Velocity approximation with high accuracy and local mass conservation.
Enabled by: high-order discretizations

Effective viscosity field and adaptive mesh resolving narrow plate boundaries (in red). Visualization by L. Alisic.

3. Scalable Stokes solver

High-order finite element discretization of the Stokes system{
−∇ ·

[
µ (∇u +∇u>)

]
+∇p = f

∇ · u = 0

discretize with−−−−−−−−→
high-order FE

[
A B>

B 0

] [
u
p

]
=

[
f
0

]
I High-order finite element shape functions
I Inf-sup stable velocity-pressure pairings: Qk × Pdisc

k−1 with 2 ≤ k

I Locally mass conservative due to discontinuous pressure space
I Fast, matrix-free application of stiffness and mass matrices
I Hexahedral elements allow exploiting the tensor product structure of basis

functions to greatly reduce the number of floating point operations

Linear solver: Preconditioned Krylov subspace method
Coupled iterative solver: GMRES with upper triangular block preconditioning[

A B>

B 0

]
︸ ︷︷ ︸

Stokes operator

[
Ã B>

0 −S̃

]−1
︸ ︷︷ ︸
preconditioner

[
u′

p′

]
=

[
f
0

]

Approximating the inverse of the viscous stress block, Ã−1 ≈ A−1, is well suited
for multigrid methods.

BFBT/LSC Schur complement approximation S̃−1

Improved BFBT / Least Squares Commutator (LSC) method:

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1

with diagonal scaling, D := diag(A). Here, approximating the inverse of the dis-
crete pressure Laplacian, (BD−1B>), is well suited for multigrid methods.

Derivation: Consider the least squares problem of a commutation relationship

Find minimizing matrix X for: min
X

∥∥AD−1B>ej −B>Xej
∥∥2
C−1 for all j,

where matrix C is s.p.d., matrix D is invertible but arbitrary for now, and ej
is the j-th unit vector. The solution X = (BC−1B>)−1(BC−1AD−1B>) gives a
C−1-orthogonal projection, i.e.,〈

B>ei, (AD−1B> −B>X) ej
〉
C−1 = 0 for all i, j.

From the choice C−1 = Ã−1, e.g., a multigrid V-cycle, we obtain〈
B>ei, (AD−1B> −B>X) ej

〉
Ã−1 = 0 for all i, j ⇔ S̃ = BÃ−1B>,

which represents an optimal preconditioner for the right-preconditioned discrete
Stokes system. A computationally feasible choice is C−1 = D−1 = diag(A)−1.

4. Stokes solver robustness with scaled BFBT
Schur complement approximation

The subducting plate
model problem on a
cross section of the
spherical Earth domain
serves as a benchmark
for solver robustness. Subduction model viscosity field.

Multigrid parameters: GMG for Ã:

1 V-cycle, 3+3 smoothing; GMG

for (BD−1B>): 1 V-cycle,

3+3 smoothing, and additional

6+6 smoothing in discontinuous,

modal pressure space.

Robustness with respect to plate boundary thickness
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GMRES iteration
0 50 100 150 200 250 300

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
 r

e
s
id

u
a
l|
|

10 -8

10 -6

10 -4

10 -2

10 0 2km_viscous_stress
2km_Stokes_with_mass
2km_Stokes_with_BFBT

Convergence for solving Au = f (gray ), Stokes system with BFBT (blue), Stokes system with viscosity weighted

mass matrix as Schur complement approximation (red) for comparison to conventional preconditioning.

5. Parallel octree-based adaptive mesh refinement
Idea: Identify octree leaves with hexahedral elements.

I Octree structure enables fast parallel adaptive oc-
tree/mesh refinement and coarsening

I Octrees and space filling curves enable fast neighbor
search, repartitioning, and 2 : 1 balancing in parallel

I Algebraic constraints on non-conforming element
faces with hanging nodes enforce global continuity
of the velocity basis functions

I Demonstrated scalability to O(500K) cores (MPI)

p4est library

6. Parallel adaptive high-order geometric multigrid
The hybrid multigrid hierarchy: Coarsen adaptive octree-based mesh

p-GMG

h-GMG

AMG

direct

p-coarsening

geometric
h-coarsening

algebraic
coars.

high-order
F.E.

trilinear
F.E.

small #cores and
reduced MPI comm.

Geometric multigrid method: p-GMG and h-GMG
I Parallel repartitioning of coarser h-GMG meshes is important to maintain

load-balancing of the adaptive meshes

I Sufficiently coarse meshes are repartitioned on subsets of cores, the MPI
communicator is reduced to the nonempty cores

I High-order L2-projection of coefficients onto coarser levels

I Re-discretization of differential equations at each coarser p- and h-GMG level

I Smoother: Chebyshev accelerated Jacobi (PETSc) with matrix-free differen-
tial operator-apply functions; avoiding full matrix assembly

I Restriction & interpolation: High-order L2-projection; restriction and interpo-
lation operators are adjoints of each other in L2-sense

I No collective communication in GMG cycles needed

Coarse solver for geometric multigrid: AMG, PETSc’s GAMG
I Coarse problems use only small core counts, usually O(100)

I The MPI communicator is reduced to the nonempty cores

GMG for (BD−1B>) on discontinuous, modal pressure space
Novel approach: Re-discretize the underlying variable coefficient Laplace oper-
ator with continuous, nodal high-order finite elements in Qk.

I Coefficient of Laplace operator is derived from diagonal scaling D−1

I Apply GMG as described above to the continuous, nodal Qk re-discretization
of the pressure Laplace operator

I On finest level, additionally apply smoother in the space Pdisc
k−1

7. Convergence dependence on mesh size and
discretization order

h-dependence using geometric multigrid for Ã and (BD−1B>)

The mesh is increasingly refined while the discretization stays fixed to Q2×Pdisc
1 .

Performed with subducting plate model problem (see above).

Solve Au = f
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Solve
(
BD−1B>

)
p = g
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Solve Stokes system

GMRES iteration
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Multigrid parameters: GMG for Ã: 1 V-cycle, 3+3 smoothing; GMG for (BD−1B>): 1 V-cycle, 3+3 smoothing, and

additional 6+6 smoothing in discontinuous, modal pressure space.

p-dependence using geometric multigrid for Ã and (BD−1B>)

The discretization order of the finite element space increases while the mesh
stays fixed. Performed with subducting plate model problem (see above).

Solve Au = f
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Solve Stokes system

GMRES iteration
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Multigrid parameters: GMG for Ã: 1 V-cycle, 3+3 smoothing; GMG for (BD−1B>): 1 V-cycle, 3+3 smoothing, and

additional 6+6 smoothing in discontinuous, modal pressure space.

Remark: The deteriorating Stokes convergence with increasing order is due to a deteriorating approximation of the

Schur complement by the BFBT method and not the multigrid components.

8. Parallel scalability of geometric multigrid
Global problem on adaptively refined mesh of the Earth’s mantle

I Locally refined mesh with up to 6 refinement levels
difference

I Q2 × Pdisc
1 discretization

I Constant AMG setup time throughout all core
counts, accounting for <10 percent of total setup

Stampede at the Texas Advanced Computing Center

16 CPU cores per node (2 × 8 core Intel Xeon E5-2680)
32GB main memory per node (8 × 4GB DDR3-1600MHz)
1,024 nodes or 16,384 cores used for scalability (MPI)

Weak scalability with increasingly locally refined Earth mesh

128 256 512 1024 2048 4096 8192 16384
0

0.5

1

1.5

1 1.04 0.96 0.89 0.9 0.91 0.83 0.84

number of cores

Weak efficiency* of Au = f solve time

128 256 512 1024 2048 4096 8192 16384
0

0.5

1

1.5

1 0.99 0.95 0.92 0.94 0.92 0.89 0.88

number of cores

Weak efficiency* of linear Stokes solve time

Detailed timings for solving Au = f

#cores velocity DOF setup time (s)
AMG, total

solve time (s)

128 21M 0.3, 3.0 64.7
256 42M 0.5, 3.3 62.5
512 82M 0.5, 3.8 65.1

1024 162M 0.6, 4.6 69.4
2048 329M 0.3, 5.3 69.4
4096 664M 0.5, 8.0 69.8
8192 1333M 0.7, 12.9 76.6

16384 2668M 0.3, 21.6 76.1

Detailed timings for solving linear Stokes system

#cores total DOF
velocity+pressure

setup time (s) solve time (s)

128 25M 6.4 256.1
256 50M 7.5 258.7
512 97M 7.3 262.1

1024 191M 8.1 269.1
2048 386M 9.6 266.0
4096 782M 11.2 274.1
8192 1567M 17.6 284.2

16384 3131M 26.1 287.2

*Weak efficiency baseline is 128 cores

Strong scalability with a fixed locally refined Earth mesh
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Strong efficiency* of linear Stokes solve time

*Strong efficiency baseline is 128 cores

9. Scalable nonlinear Stokes solver:
Inexact Newton-Krylov method

Newton update (ũ, p̃) is computed as the inexact solution of
−∇ ·

[(
µ I + ε̇

∂µ

∂ε̇

(∇u +∇u>)⊗ (∇u +∇u>)
‖(∇u +∇u>)‖2F

)
(∇ũ +∇ũ>)

]
+∇p̃ = −rmom,

∇ · ũ = −rmass.

I Krylov tolerance for the inexact update computation decreases with subse-
quent Newton steps to achieve superlinear convergence

I Number of Newton steps is independent of the mesh size
I Velocity residual is measured in H−1-norm for backtracking line search; this

avoids overly conservative update steps � 1 (evaluation of residual norm
requires 3 scalar constant coefficient Laplace solves, which are performed
by PCG with GMG preconditioning)

I Grid continuation at initial Newton steps: Adaptive mesh refinement to re-
solve increasing viscosity variations arising from the nonlinear dependence
on the velocity
Convergence of inexact Newton-Krylov (16,384 cores)

GMRES iteration
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Plate velocities at nonlinear solution.

Adaptive mesh refinement after the first Newton step is indicated by black ver-
tical line. 2.3B velocity & pressure DOF at solution, 459 min total runtime on
16,384 cores.
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